Identifying Codes in Vertex-Transitive Graphs and Strongly Regular Graphs
نویسندگان
چکیده
منابع مشابه
Identifying Codes in Vertex-Transitive Graphs and Strongly Regular Graphs
We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that re...
متن کاملSmall vertex-transitive directed strongly regular graphs
We consider directed strongly regular graphs de2ned in 1988 by Duval. All such graphs with n vertices, n6 20, having a vertex-transitive automorphism group, are determined with the aid of a computer. As a consequence, we prove the existence of directed strongly regular graphs for three feasible parameter sets listed by Duval. For one parameter set a computer-free proof of the nonexistence is pr...
متن کاملIdentifying codes in vertex-transitive graphs
We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that re...
متن کاملStrongly regular edge-transitive graphs
In this paper, we examine the structure of vertexand edge-transitive strongly regular graphs, using normal quotient reduction. We show that the irreducible graphs in this family have quasiprimitive automorphism groups, and prove (using the Classification of Finite Simple Groups) that no graph in this family has a holomorphic simple automorphism group. We also find some constraints on the parame...
متن کاملDirected Strongly Regular Graphs and Their Codes
Directed Strongly Regular Graphs (DSRG) were introduced by Duval as a generalization of strongly regular graphs (SRG’s) [4]. As observed in [8] a special case of these are the doubly regular tournaments or equivalently, the skew Hadamard matrices. As the latter already lead to many interesting codes [10] it is natural to consider the more general case of codes constructed from the adjacency mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2015
ISSN: 1077-8926
DOI: 10.37236/5256